Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Artificial intelligence (AI) ethics has emerged as a burgeoning yet pivotal area of scholarly research. This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades. The analysis reveals a discernible tripartite progression, characterized by an incubation phase, followed by a subsequent phase focused on imbuing AI with human-like attributes, culminating in a third phase emphasizing the development of human-centric AI systems. After that, they present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence. Finally, they identify two notable research gaps in AI ethics regarding the large ethics model (LEM) and AI identification and extend an invitation for further scholarly research.more » « less
-
Construction tasks involve various activities composed of one or more body motions. It is essential to understand the dynamically changing behavior and state of construction workers to manage construction workers effectively with regards to their safety and productivity. While several research efforts have shown promising results in activity recognition, further research is still necessary to identify the best locations of motion sensors on a worker’s body by analyzing the recognition results for improving the performance and reducing the implementation cost. This study proposes a simulation-based evaluation of multiple motion sensors attached to workers performing typical construction tasks. A set of 17 inertial measurement unit (IMU) sensors is utilized to collect motion sensor data from an entire body. Multiple machine learning algorithms are utilized to classify the motions of the workers by simulating several scenarios with different combinations and features of the sensors. Through the simulations, each IMU sensor placed in different locations of a body is tested to evaluate its recognition accuracy toward the worker’s different activity types. Then, the effectiveness of sensor locations is measured regarding activity recognition performance to determine relative advantage of each location. Based on the results, the required number of sensors can be reduced maintaining the recognition performance. The findings of this study can contribute to the practical implementation of activity recognition using simple motion sensors to enhance the safety and productivity of individual workers.more » « less
An official website of the United States government
